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Abstract. Evolutionary algorithms are a promising approach for the
automated design of artificial neural networks, but they require a com-
pact and efficient genetic encoding scheme to represent repetitive and re-
current modules in networks. Here we introduce a problem-independent
approach based on a human-readable descriptive encoding using a high-
level language. We show that this approach is useful in designing hier-
archical structures and modular neural networks, and can be used to
describe the search space as well as the final resultant networks.

1 Introduction and Background

Neuroevolution refers to the design of artificial neural networks using evolu-
tionary computation methods. It involves searching through a space of weights
and/or architectures without substantial human intervention, trying to obtain
an optimal network for a given task. The evaluation (fitness) and improvement
of each network is based on its overall behavior (not just on its performance,
but also on other properties of the network), and this makes neuroevolution a
promising method for solving complex problems involving reinforcement learning
[5,20] or designing recurrent networks [14].

An important research issue in neuroevolution is determining how to best
encode possible solution networks as developmental “programs” forming the
genotype in a compact and efficient manner. In early work in this field, Kitano
encoded a set of developmental rules as a graph generation grammar having the
form of a matrix [9,10]. Such an approach is developmental in nature because the
information (e.g., a set of ordered rules and parameters) stored in the genotype
describes a way of “growing” the phenotype. Constructing a network connectiv-
ity matrix begins with the initial start symbol in a chromosome, and rules are
then applied to replace each non-terminal symbol in the chromosome with a 2x2
matrix of symbols, until there are all terminal symbols. Other well known but
somewhat different approaches include Gruau’s cellular encoding, where each
rule defines a transformation or modification of a cell and the rules constitute
a tree structure such that the order of execution for each rule is specified [3,4];
edge encoding [15]; and geometry-based cellular encoding [11,12].

Also of relevance to the work described here is past research that has proposed
layer-based, parametric encoding schemes in which the basic unit of network
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architecture is a set of nodes (i.e., a layer) and network properties such as layer
size and learning rates are encoded in the chromosomes as parameters that are
altered during the evolutionary process [6,7,16,19].

Many of the encoding schemes above are very difficult to apply for designing
large networks due to the scalability problem and their procedural nature, and
are based on specific problem-dependent assumptions (e.g., the number of hid-
den nodes is manually selected [14]). Here we present an encoding scheme which
appears to address these limitations. A layer-based, hierarchical architecture rep-
resentation in our approach enables a high-level specification of multi-modular
networks, and we let users incorporate their domain knowledge and restrictions
on the types of networks evolved by explicitly choosing an appropriate set of
network properties and their legal values. Thus our system does not a priori
restrict whether architecture, layer sizes, learning method, etc. form the focus of
evolution as many previous approaches have done, but instead allows the user
to select which aspects of networks are to evolve. Furthermore, our approach
is analogous to the abstraction process used in contemporary programming, in
the sense that users write a text file specifying the problem to solve using a
given high-level language. Our system then parses this file and searches for a
solution within the designated search space, and finally it produces the results
as another human readable text file. Thus we believe that our approach facili-
tates automated design of large scale neural networks covering a wide range of
problem domains, not only because of its encoding efficiency, but also because
it increases human readability and understandability of the initial environment
specification and the final resultant networks.

2 Descriptive Encoding Methodology

Our encoding scheme is an extension of both the grammatical and the parametric
encoding methods described above. Modular, hierarchical structure is essential
when the size of the resultant neural network is expected to be large, since
monolithic networks can behave irregularly as the network size becomes larger.
Moreover, there is substantial evidence that a basic underlying neurobiological
unit of cognitive function is a region (layer), e.g., in cerebral cortex [8], which
strengthens the argument that hierarchical structure of layers should be the
base architecture of any functional unit. Parametric encoding can also reduce the
complexity of a genotype when there is a regular pattern in the network features,
and opens the possibility for users to specify a set of appropriate network features
according to given problem requirements.

We refer to our approach as a descriptive encoding since it enables users to
“describe” the target space of neural networks to be considered in a natural, non-
procedural human readable format. A user writes a text file like the ones later
in this paper to specify sets of layers with appropriate properties, their legal
evolvable values, and inter-layer connectivity. This input description does not
specify individual connections, nor their weights. The specification of legal values
affects the range of valid genetic operations. In other words, a description file
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Input
Description File

Population of
Genotypes

Population of 
PhenotypesDevelopment

Learning

Fitness Measurement
Selection

Genetic Operations

Population of 
Trained Networks

Output
Description File

Fig. 1. The development, learning, and evolution procedure used in our system. The
input description file (upper left) is a human-written specification of the class of neural
networks to be evolved (the space to be searched) by the evolutionary process; the
output description file (lower right) is a human-readable specification of the best specific
networks obtained.

specifies the initial population and environment variables, and confines the search
space of genetic operators throughout the evolutionary process. The evolutionary
process in our system involves an initialization step plus a repeated cycle of three
stages, as in Figure 1. First, the text description file prepared by the user is
parsed and an initial random population of chromosomes (genotypes) is created
within the search space represented by the description (left part of Figure 1).
In the Development stage, a new population of realized networks (phenotypes)
is created or “grown” from the genotype population. Each phenotype network
keeps actual and specific nodes, connection weights, and biases. The Learning
stage involves training each phenotype network if the user specifies one or more
learning rules in the description file, making use of an input/output pattern file.
Evolutionary computation is often less effective for local, fine tuning tasks [21],
so we adopt neural network training methods. After the training stage, each
individual network is evaluated according to user-defined fitness criteria and
genetic operators are applied to the genotypes. Currently, fitness criteria may
reflect both network performance (e.g., mean squared error) and a penalty for a
large network (e.g., total number of nodes), or other measures.

2.1 Explicitly Incorporating Domain Knowledge

When searching for an optimal neural network using evolutionary computation
methods, a network designer usually wants to restrict the architecture, learning
rules, etc. to some proper subset of all possible models. Thus, many problem
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[SEQUENCE

[LAYER input  [SIZE 45] [CONNECT hidden]

[LEARN_RULE [EVOLVE bp rprop]]]

[LAYER hidden [SIZE [EVOLVE 1 45]] [CONNECT output]

[LEARN_RULE [EVOLVE bp rprop]]]

[LAYER output [SIZE 45] [CONNECT [EVOLVE context]]  

[CONNECT_RADIUS 1]]

[SEQUENCE context

[LAYER con [NUMBER  [EVOLVE 1 5]] [SIZE 45]
[CONNECT [EVOLVE con hidden]]]]

]

context

input

?

output

?

?

?

context

input

?

output

?

?

?

(a) (b)

hidden

Fig. 2. (a) Part of a description file; other information, such as details of the evolution-
ary process, is not shown. (b) An illustration of the corresponding class of recurrent
networks that are described in (a). In effect, the description file specifies the search
space to be used by the evolutionary process, while simultaneously providing a tree
structure to be used by genetic operators such as crossover and mutation.

specific constraints need to be applied in creating the initial population and
maintaining it within a restricted subspace of the space of all neural networks.
For example, the range of architectures and valid property values for each indi-
vidual network in the initial population will depend upon the specific problem
being addressed. While such constraints and initialization procedures have been
treated implicitly in previous approaches, our encoding scheme permits them to
be described in a compact and explicit manner.

Figure 2 illustrates an example description written in our language for evolv-
ing a recurrent network, motivated by [17]. Each semantic block, enclosed in
brackets [ · · · ], starts with a type identifier followed by an optional name and
a list of properties (a much simplified grammar for part of our encoding lan-
guage is given in the Appendix to make this more precise). A network contains
other (sub)networks and/or layers recursively, and a network type identifier (SE-
QUENCE, PARALLEL, or COLLECTION) indicates the arrangement of the
subnetworks contained in this network. We define a layer as a set (sometimes
one or two dimensional, depending on the problem) of nodes that share the same
properties, and it is the basic module of our network representation scheme. For
example, the description in Figure 2a indicates that a sequence of four types of
layers are to be used: input, hidden, output, and con layers. Properties fill in the
details of the network architecture (e.g., layer size and connectivity) and specify
other network features including learning rules and activation dynamics.

Most previous neuroevolution research has focused a priori on some lim-
ited number of network features (e.g., network weights, number of nodes in the
hidden layer) assuming that the other features are fixed, and this situation has
prevented neuroevolution models developed by researchers from being used more
widely in different environments. To overcome this limitation, we let users decide
which properties are necessary to solve their problems, and what factors should
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be evolved, from a set of supported properties that include architectures, activa-
tion dynamics, and learning rules. Unspecified properties may be replaced with
default values and are treated as being fixed after initialization. For example, in
Figure 2a, the input layer has a fixed number of 45 nodes and is connected to
the hidden layer, while the single hidden layer has a SIZE within the range 1
to 45. The EVOLVE attribute indicates that the hidden layer’s size will be ran-
domly selected initially and is to be modified within the specified range during
the evolution process. Note that the learning rules to be used for connections
originating from both input and hidden layers are also declared as an evolv-
able property. After processing input patterns from the hidden layer, the output
layer propagates its output to the layers in the context network, and the CON-
NECT RADIUS property defines one-to-one connectivity in this case. Since the
number of layers in the context network may vary from 1 to 5 (i.e., LAYER con
has an evolvable NUMBER property), this output connectivity can be linked to
any of these layers that were selected in a random manner during the evolution
process. Finally, the layers in the context network are arranged as a sequence,
and are connected to the hidden layer or themselves. Figure 2b depicts the cor-
responding search space schematically for the description of Figure 2a, and the
details of each individual genotype (shown as question marks in the picture)
will be assigned within this space at the initialization step and forced to remain
within this space during the evolution process. Since the genotype structure is
a tree, genetic operators used in GP [13] can be easily applied to them.

3 Results with the Parallel Multiple XOR Problem

We use a parallel multiple exclusive-or (XOR) problem that currently runs on
our system to illustrate the transformation of a description file into the results
of an evolutionary process. The parallel multiple XOR problem is defined by a
training data set where the correct result of each output node is the XOR of a
corresponding separate pair of input nodes, independent of the values of the other
output nodes. Of course, the evolutionary process has no a priori knowledge that
this is the desired behavior; it is only evident from the training data. Further,
this problem is difficult in the sense that there are apparent partial relationships
between unrelated input and output nodes that must be identified without a
priori domain knowledge. Also, since individual XOR problems are not linearly
separable, the evolutionary process must discover that at least one hidden layer
is necessary. A minimal network with no hidden layer cannot be the solution,
although it is legal.

3.1 Encoding Details

The description file in Figure 3a defines a parallel dual-XOR problem with four
input nodes, where layers in1 and out1 form one XOR gate, while layer in2
is paired with out2 to form another one. This description specifies both the
initial networks to be created and the search space. It indicates that the desired



524 J.-Y. Jung and J.A. Reggia

[SEQUENCE dual_xor

[PARALLEL input

[LAYER in  [NUMBER 2][SIZE 2]

[CONNECT [EVOLVE hidden output]]]]

[COLLECTION hidden

[LAYER hid [NUMBER  [EVOLVE 0 10]]

[SIZE    [EVOLVE 1  5]]

[CONNECT [EVOLVE hidden output]]]]

[PARALLEL output

[LAYER out [NUMBER 2][SIZE 1]]]]

(a)

in
1

in
2

out
1

out
2

hidden

?

?

?

?
?

(b)

?

in
1

in
2

out
1

out
2

hidden

?

?

?

?
?

(b)

?

Fig. 3. Initial description file (a) and sketch of the space of networks to be searched (b)
for a simple parallel dual-XOR problem with four input nodes and two output nodes.

overall structure is a sequential network named dual XOR consisting of two
input layers in parallel, a set (or “COLLECTION”) of zero to 10 hidden layers,
and two single-node output layers. The NUMBER statements assign the range
of how many layers of each type may be created with the same properties in the
network. So the description for the input layer is equivalent (except for optional
layer names) to specifying this:

[LAYER in1 [SIZE 2] [CONNECT [EVOLVE hidden output]] ]
[LAYER in2 [SIZE 2] [CONNECT [EVOLVE hidden output]] ]

The CONNECT property in the input layers descriptor indicates that nodes
in each input layer may evolve to connect to hidden layers, output layers, neither
or both. The COLLECTION description indicates that networks can evolve to
have 0 to 10 hidden layers, each with 1 to 5 nodes, and that they can be connected
arbitrarily to themselves and to the output layers. The EVOLVE attributes
listed here indicate that the connections from input layers to hidden and/or
output layers, the number and size of hidden layers, and the connections from
hidden layers to other hidden layers and output layers, are all evolvable. These
combinations are randomly and independently decided at the initialization step
and enforced by genetic operators throughout the evolution process.

Each chromosome created from this description stores a representation of an
architecture in the form of a tree, as well as other network features as embedded
parameters (properties) in the tree. This hierarchical description of the network
architecture has some benefits over a linear list of layers in previous layer-based
encoding schemes, since it directly maps the topology of a network into the
representation. These benefits are: 1) it enables crossover operation on a set of
topologically neighboring layers, which was not possible with point crossover op-
erators; 2) functionally separated blocks can be easily specified and identified in
a large scale, multi modular network; and 3) reusable subnetworks can be defined
to address the scalability problem (e.g., like ADFs in GP [13]). Figure 4a and
b illustrate two example networks automatically generated from the description
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[SEQUENCE dual_xor

[PARALLEL input

[LAYER in1 [SIZE 2][CONNECT h1 h2]]

[LAYER in2 [SIZE 2][CONNECT h1 h3]]]

[PARALLEL hidden

[LAYER h1  [SIZE 2][CONNECT h3 out1]]

[LAYER h2  [SIZE 4][CONNECT out1 out2]]

[LAYER h3  [SIZE 3][CONNECT out2]]]

[PARALLEL output

[LAYER out1 [SIZE 1]]

[LAYER out2 [SIZE 1]]]

]

(c)

in
1

in
2

out
1

out
2

h1

h2

h
3

in
1

in
2

out
1

out
2

h1

h2

h
3

SEQUENCE dual_xor

PARALLEL input PARALLEL hidden PARALLEL output

in1 in2 h1 h2 h3 out1 out2

SEQUENCE dual_xor

PARALLEL input PARALLEL hidden PARALLEL output

in1 in2 h1 h2 h3 out1 out2

(d)

Fig. 4. (a),(b) Examples of neural network architectures randomly created from the
description during initialization. Input and output layers are the same, but the number
of hidden layers and their connections are quite different and specific now. Arrows indi-
cate sets of connections between layers (i.e., not individual node-to-node connections).
(c) The chromosome description of the network illustrated in (a), as it would be written
in our descriptive language. This is not a description file written by the user, but is
automatically generated from that description file. Note that no EVOLVE attributes
are present, for example. (d) Top part of the tree-like structure of the genotype in (c),
making it directly usable by GP operators. Each rectangle designates a layer.

file of Figure 3a; they show different numbers of layers and topologies. Figure
4c shows the corresponding chromosome or genotype structure of one of these,
the network in Figure 4a. Note that the overall structure is the same with the
initial description in Figure 3a, but the COLLECTION hidden network has been
replaced with a PARALLEL network with three layers and each property has
a fixed value (i.e., the EVOLVE attributes are gone). Figure 4d shows the tree
like structure of this genotype, making it amenable to standard GP operators.

3.2 The Evolutionary Procedure

The description file created by the user not only specifies the search space, but
also sets a variety of parameter values that influence the evolutionary process.
Figure 5 shows the description for the learning and evolutionary parameters used
to solve the parallel dual XOR problem. This is also a part of the description



526 J.-Y. Jung and J.A. Reggia

[TRAINING 

[TRAIN_DATA “./inout_pattern.txt”] [MAX_TRAIN 100]]

[EVOLUTION

[FITNESS weighted_sum] [ALPHA 0.5] [BETA 0.2] [GAMMA 0.2]

[SELECTION tournament] [TOURNAMENT_POOL 3] [ELITISM 0]  

[MUTATION_PROB 0.7]    [CROSSOVER_PROB 0.0]

[MAX_GENERATION 50]    [MAX_POPULATION 50]

]

Fig. 5. Training and evolutionary parameters for a parallel XOR problem.

file following the network description, providing users with a systematic way to
control the training and evolutionary procedure. In the Learning stage, each phe-
notype network is trained for 100 epochs with a default (as it is not specified in
the description) backpropagation algorithm (RPROP [18]) plus the input/output
pattern file specified in the TRAIN DATA property (recurrent connections are
deleted after the mutation operation). Currently, the fitness value of each phe-
notype network is calculated as a weighted sum of three reciprocally normalized
criteria: mean squared error (MSE, e), total number of network nodes (n), and
total number of layer-to-layer connections (c) (ultimately, we wish to allow the
user to specify more general fitness functions). These three criteria are weighted
with coefficients α, β, and γ which the user assigns (Figure 5). MSE reflects the
output performance of the network, and the other two measures are adopted as
a penalty for larger networks. Currently connections are counted on a layer-to-
layer basis, not on a node-to-node basis, since the latter may be correlated or
proportional to the total number of nodes. More specifically, the fitness value of
a network is:

fit = α ·
(

emax − e

emax − emin

)
+ β ·

(
nmax − n

nmax − nmin

)
+ γ ·

(
cmax − c

cmax − cmin

)
(1)

where xmin(xmax) denotes the minimum (maximum) value of criterion x among
the population. Although this simple weighted sum was sufficient for the XOR
problem, other multi-objective optimization methods [2] can be easily applied.
Tournament selection with tournament size 3 is specified by the user for selecting
candidate individuals for the next generation. Selection is based on the trained
network fitness values, while genetic operations are done with genotype trees.
The fitness value of each network is compared with that of three other randomly
selected networks. Then one fittest network is selected and the corresponding
chromosome (genotype) is copied to the next generation. No individuals other
than the tournament winners are inserted into the new population and no elitism
is used. The mutation rate is 0.7 and no crossover is used. Operators can mutate
layer size, direction of an existing inter-layer connection, and can add or delete
a new layer or connection. The initial description file is implicitly used here
to constrain the resultant network population to remain in the search space
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[SEQUENCE dual_xor

[PARALLEL input

[LAYER in1 [SIZE 2][CONNECT [h1 out1 out2]]

[LAYER in2 [SIZE 2][CONNECT [h2 out2]]]  

[PARALLEL hidden

[LAYER h1  [SIZE 1][CONNECT out1]]

[LAYER h2  [SIZE 1][CONNECT out2]]]

[PARALLEL output

[LAYER out1 [SIZE 1]]

[LAYER out2 [SIZE 1]]]]

in
1

in
2

out
1

out
2

101.9 46.4

22.6

0.2

108.3 71.5

39.6

h
1

h
2

in
1

in
2

out
1

out
2

101.9 46.4

22.6

0.2

108.3 71.5

39.6

h
1

h
2

(a) (b)

Fig. 6. (a) A typical separate channel network evolved for the dual XOR problem.
Each input layer uses its own hidden node (separate layer), and a direct connection
to the correct matching output node. (b) The average value of absolute weights on
connections between each layer is specified. A dotted line between in1 and out2 shows
persistent, non-optimal connectivity with very small weights.

specified by the user; i.e., mutation only occurs within the legal range specified
in the description file. After these genetic operations, a new genotype population
is generated and starts another cycle. The total number of generations in a
simulation and population size are both 50.

3.3 Results of the Evolutionary Process

Given the above information, our system generated near-optimal networks that
both solved the dual XOR problem and had a small number of nodes. One of the
best, but commonly found, resultant networks that correctly solve the problem
is depicted in Figure 6a, when the ratio of α = 0.5, β = 0.2, and γ = 0.2 was
used. Note that this text description is a part of the output file which is gen-
erated by the system, and still a legal description in our language. Since it is a
specific network, no EVOLVE attributes are present. The final resultant output
also contains various statistical data and network details including trained con-
nection weights, as summarized in Figure 6b. This result clearly demonstrates
that our system can identify the partial, internal relationships between input and
output patterns present in the dual XOR problem and represent them within a
modular architecture, without a priori information about this in the initial net-
work description. Ignoring the dotted line connections which have a near zero
weight values shown in Figure 6b, we can easily see that this is a near-optimal
network for the dual XOR problem in terms of the number of network nodes
and connections.
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4 Encoding Properties

Our approach has some important encoding properties. It can represent recurrent
network architectures, and is scalable with respect to node/connectivity changes.
More specifically, the encoding approach we are using has:

– Closure : A representation scheme can be said to be closed if all genotypes
produced are mapped into a valid set of phenotype networks [1]. First, every
genotype at the initial step is decoded into a valid phenotype since the initial
population of genotypes is based on the user-defined description. Next, our
approach is closed with respect to mutation operators that change property
values in a layer, since we only allow property values to be mutated within
the legal ranges defined by users or the system. This is checked at runtime
and any illegal mutation result is discarded with replacement by another
mutation to keep the population size fixed. Although our encoding scheme
is not closed with crossover operators on a grammar level, it can be con-
strained to be closed on a system level by adjusting invalid property values,
according to the description file. For example, if the number of layers in a
network becomes too large after a crossover operation, such a network may
be deleted (or the whole network structure could be adjusted to maintain
legal genotypes).

– Completeness : Our encoding scheme can be used to represent any recurrent
neural network architecture. This can be easily seen from the fact that if we
confine the size of each and every layer to be one node, our encoding scheme
is equivalent to a direct encoding which specifies full connectivity on a node-
to-node basis. Combined with the closure property, this property ensures
that our encoding can safely replace the direct encoding or the equivalent
encodings.

– Scalability : This property can be defined by how decoding time and genotype
space complexity are affected by a single change in a phenotype [1]. Our
encoding scheme takes O(1) time and space in a node addition/deletion,
since changing the number of nodes means just changing a parameter value
in a property in the corresponding genotype, and node addition/deletion
does not make substantial changes in time and space requirements during the
genotype-phenotype mapping. In a similar way, a node-to-node connection
addition/deletion in a phenotype will cost O(1) space in genotype and O(N+
C) decoding time, as N denotes the total number of nodes in a network, and
C denotes the total number of layer-to-layer connections. If a connection
is deleted in a phenotype, it will split the corresponding source and target
layers since nodes in these layers do not share connectivity anymore, but this
split is equivalent to deleting a node in both layers plus creating two single-
node layers, which will cost O(1) space (assuming a constant layer size) and
O(N + C) additional decoding time. In general, our scheme is O(1) scalable
with respect to nodes and O(N + C) scalable with respect to connectivity.
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5 Discussion

In this paper we have introduced a problem-independent evolving neural net-
work system based on an encoding scheme and a high-level description language.
Our approach can efficiently represent the hierarchical structure of multi-layer
neural networks, which is a desired property for designing large scale networks.
The tree structured encoding scheme used in our approach is amenable to GP
operators, and we have shown that it is scalable and can be mapped into a valid
set of recurrent phenotype networks. We have demonstrated with the parallel
XOR problem that our system can identify relationships between input and out-
put patterns and incorporate them into an optimal architecture. The use of a
description file provides users with a systematic, non-procedural methodology
for specifying the search space and evolution parameters, and the same language
used for the network description can be used to produce a human readable final
network description.

References

1. K. Balakrishnan and V. Honavar, Properties of genetic representations of neural
architectures, Proc. of the World Congress on Neural Networks, pp. 807-813, 1995.

2. C. Coello, Evolutionary multi-objective optimization: a critical review, Evolution-
ary Optimization, R. Sarkar et al. (eds.), Kluwer, pp. 117-146, 2002.

3. F. Gruau, Neural network synthesis using cellular encoding and the genetic algo-
rithm, Ph.D. Thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Normale
Supirieure de Lyon, France, 1994.

4. F. Gruau, Automatic definition of modular neural networks, Adaptive Behavior,
3:151-183, 1995.

5. F. Gruau, D. Whitley, and L. Pyeatt, A comparison between cellular encoding and
direct encoding for genetic neural networks, Genetic Programming 1996: Proc. of
the First Annual Conference, MIT Press, pp. 81-89, 1996.

6. S. A. Harp, T. Samad, and A. Guha, Toward the genetic synthesis of neural net-
works, Proc. of 3rd International Conference on Genetic Algorithms, Morgan Kauf-
mann, pp. 379-384, 1989.

7. T. S. Hussain and R. A. Browse, Network generating attribute grammar encoding,
Proc. of International Joint Conference on Neural Networks (IJCNN ‘98), 1:431-
436, 1998.

8. E. R. Kandel and J. H. Schwartz, Principles of Neural Science, Elsevier, 1983.
9. H. Kitano, Designing neural networks using genetic algorithms with graph gener-

ation system, Complex Systems, 4:461-476, 1990.
10. H. Kitano, Neurogenetic learning: an integrated method of designing and training

neural networks using genetic algorithms. Physica D, 75:225-238, 1994.
11. J. Kodjabachian and J. A. Meyer, Evolution and development of control architec-

tures in animats, Robotics and Autonomous Systems, 16:161-182, 1995.
12. J. Kodjabachian and J. A. Meyer, Evolution and development of modular control

architectures for 1-D locomotion in six-legged animats, Connection Science, 10:211-
254, 1998.

13. J. R. Koza, Genetic Programming II, MIT Press, 1994.



530 J.-Y. Jung and J.A. Reggia

14. K. W. C. Ku, M. W. Mak, and W. C. Siu, Adding learning to cellular genetic al-
gorithms for training recurrent neural networks, IEEE Trans. on Neural Networks,
10(2):239-252, 1999.

15. S. Luke and L. Spector, Evolving graphs and networks with edge encoding: prelim-
inary report, Late Breaking Papers at the Genetic Programming 1996 Conference,
pp. 117-124, 1996.

16. M. Mandischer, Representation and evolution of neural networks, Artificial Neural
Nets and Genetic Algorithms, R. F. Albrecht, C. R. Reeves, and N. C. Steele (eds.),
Springer, pp. 643-649, 1993.

17. M. J. Radio, J. A. Reggia, and R. S. Berndt, Learning word pronunciations using
a recurrent neural network, Proc. of the International Joint Conference on Neural
Networks (IJCNN-01), 1:11-15, 2001.

18. M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation
learning: the RPROP algorithm, Proc. of the IEEE International Conference on
Neural Networks, 1:586-591, 1993.

19. W. Schiffmann, Encoding feedforward networks for topology optimization by sim-
ulated evolution, Proc. of 4th International Conference on Knowledge-Based Intel-
ligent Engineering Systems and Allied Technologies (KES 2000), 1:361-364, 2000.

20. K. O. Stanley and R. Miikkulainen, Efficient reinforcement learning through evolv-
ing neural network topologies, Proc. of the Genetic and Evolutionary Computation
Conference (GECCO-2002), Morgan Kaufmann, pp. 569-577, 2002.

21. X. Yao, Evolving artificial neural networks, Proc. of the IEEE, 87(9):1423-1447,
1999.

Appendix – A Simplified and Partial Encoding Grammar

<description> := <network> <training> <evolution>
<network> := [<net_type> <name> <sub_network>] | <layer>
<training> := [TRAINING <tr_prop_list>]
<evolution> := [EVOLUTION <ev_prop_list>]
<net_type> := SEQUENCE | PARALLEL | COLLECTION
<sub_network> := <network> <sub_network> | <network>
<layer> := [LAYER <name> <ly_prop_list>]
<ly_prop_list> := <ly_property> <ly_prop_list> | <ly_property>
<tr_prop_list> := <tr_property> <tr_prop_list> | <tr_property>
<ev_prop_list> := <ev_property> <ev_prop_list> | <ev_property>
<ly_property> := [NUMBER <value>] | [SIZE <value>] | ...
<tr_property> := [TRAIN_DATA <path> ] | [MAX_TRAIN <value>] | ...
<ev_property> := [FITNESS <name> ] | [SELECTION <name> ] | ...
<value> := [EVOLVE <range_value>] | [<range_value>] |

[EVOLVE <fixed_value>] | <fixed_value>
<range_value> := <fixed_value> <range_value> | <fixed_value>
<fixed_value> := <integer> | <float> | <literals>
<name> := <literals>
<path> := ‘‘<name>’’
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